#### **NRC MOV Course**

Theory of Operation



## Theory of Operation of MOVs

#### **Objectives**

- Identify common valve types and their typical service applications.
- Describe the mechanical components that make up rising-stem valves.
- Describe the mechanical components that make up rotatingstem valves.
- Describe the major electrical and mechanical components that make up common motor actuators.
- Describe the electrical and manual modes of operation of motor actuators and trace the path of the rotational forces through the device.



#### Introduction

- An MOV is a combination of two separate devices, usually provided by two separate manufacturers.
  - Valve Assembly
  - a mechanical device to optimize a desired fluid control function, such as isolation or throttling.
  - Actuator
  - an electrical/mechanical device used to position a valve assembly from a remote location.
- The basic parts of a valve assembly have common nomenclature regardless of the type of valve.
  - valve body, bonnet, disc (pressure boundary)
  - seat, stem, and yoke



## Valve Assembly Basic Parts





## Rising-Stem Valves

- Rising-Stem Valves are those designs operated by pushing or pulling the valve stem.
- The valve stems do not rotate.
- The valve stems are threaded and matched to a stem nut to convert the rotational output of the actuator to linear movement of the valve stem.
- Most common designs are gate and globe valves.



#### Gate Valves

- Gate valves are used to start or stop flow, but are not intended to regulate or throttle flow.
- The name "gate" comes from the appearance of the disc in the flow stream.
- Gate valves are most often found in flow isolation applications
  - Used at any system pressure
  - Common in large diameter, higher pressure piping systems.
  - Often have a closing safety function such as containment isolation or an opening safety function such as emergency core cooling.



## Typical Gate Valve





**College of Engineering** 

## Gate Valve Disc Designs

- Gate valve discs may be parallel or wedge design.
  - Parallel discs have seating surfaces that are parallel to each other and perpendicular to the flow path.
  - Wedge discs have angled seating surfaces which form a "V" shape that wedges the disc between the seat rings.
  - Wedge discs can be solid, split, or flexible.
- Gate valve discs typically provide seating on both the upstream and downstream seats.



## Gate Valve Wedge Discs





#### Globe Valves

- Globe valves are used to stop, start, and regulate fluid flow.
- The name "globe" is derived from the shape of the disc which can be similar to a globe.
- The disc more often looks more like a plug.
  - (can lead to confusion with true plug valves which are quarter-turn valves)
- Globe valves can be designed so that, a large flow area is realized around the disc with small stem movement.
  - This allows a quick opening or closing function.
- Globe valves and be designed so that the flow area gradually changes with stem movement.
  - This gives the globe valve good throttling ability for use in regulating flow.



#### Globe Valve Orientation

- Globe valves can be installed with flow over or under the disc.
- Closing against the direction of the fluid flow (flow under disc) impedes closing but aids in opening the valve.
- Closing in the same direction as the fluid flow (flow over disc) aids closing but impedes opening the valve.
- This characteristic makes globe valves well suited for fail-open or fail-close valve applications



## Typical Globe Valve





**College of Engineering** 

#### **Quarter-Turn Valves**

- Quarter-turn valves are those designs operated by turning the valve stem 90 degrees.
- Valve discs rotate with the valve stem to open or close the flow path.
- Valve stems are driven directly by the rotational motion of the actuator.
- Most common designs are ball, plug, and butterfly valves.



## Ball And Plug Valves

- Ball and plug valves are used to stop or start fluid flow.
- The names are derived from the shape of the disc which resembles a ball or a plug.
- In the open position, the ball/plug provides an unobstructed flow path through the valve.
- In the closed position, the ball/plug is turned 90 degrees, blocking the ports and stopping fluid flow.



## Ball And Plug Valves

- Advantages:
  - Little resistance to operation
  - Differential pressure has little effect on operating loads
  - Quick opening and closing
  - Designed for any system pressure.
- Disadvantages:
  - Higher cost
  - Rapid wear and corrosion of seats
  - Inability to regulate flow
  - Weight of the ball or plug in large diameter systems



## Typical Ball Valve





**College of Engineering** 

## Typical Plug Valve





## **Butterfly Valves**

- Butterfly valves are used to stop, start, and regulate fluid flow.
- The valve stem extends completely through the valve body.
- The disc is a flat or slightly curved disc attached to the valve stem.
- The disc is rotated 90 degrees about an axis at a right angle to fluid flow
- The seats are typically a soft, resilient seat made of rubber or neoprene..



## **Butterfly Valves**

- In the fully open position, little resistance to flow exists and pressure loss is minimal.
- In the fully closed position little seat leakage occurs provided the resilient seat is in good condition.
- At intermediate positions, throttling of the fluid flow occurs although the flow regulating characteristics are not as good as that of globe valves.
- Butterfly valves are used in low pressure systems, such as circulating water systems.
- They are inexpensive and fairly easy to maintain.



## Typical Butterfly Valve





#### Valve Actuators

- The actuator operates the valve stem and disc assembly.
- Actuators for valve assemblies can be
  - manual handwheels
  - manual levers
  - motor operators
  - pneumatic operators
  - hydraulic operators
  - solenoid
- MOV Actuators used in US nuclear power plants are electro-mechanical devices, manufactured by
  - Limitorque
  - Rotork



## Limitorque SMB Actuators





# Limitorque Actuator on a Typical Gate Valve





## Limitorque SMB Load Ratings

| Type | Size     | Nuclear       | Commercial    | Maximum    | Max Threaded  |
|------|----------|---------------|---------------|------------|---------------|
|      |          | Rating, ft-lb | Rating, ft-lb | Thrust, Ib | Stem Dia., in |
| SMB  | 000      | 90            | 120           | 8,000      | 1-3/8         |
| SMB  | 00       | 250           | 260           | 14,000     | 1-3/4         |
|      |          |               |               |            |               |
| SMB  | 0        | 500           | 700           | 24,000     | 2-3/8         |
| SMB  | 1        | 850           | 1,100         | 45,000     | 2-7/8         |
| SMB  | 2        | 1,800         | 1,950         | 70,000     | 3-1/2         |
| SMB  | 3        | 4,200         | 4,500         | 140,000    | 5             |
| SMB  | 4 & 4T * | 7,500         | 8,300         | 250,000    | 5             |
| SMB  | 5 & 5T * | 20,000        | 20,000        | 500,000    | 6-1/4         |



\* The "T" in the size designation means a torque only application, no thrust capability.

## SMB Modes of Operation

- Electrical operation has electrical control for actuator motion. The actuator and valve are protected by the torque switch.
- Manual operation still has the indication, but the technician controls position.
- The two modes are separated by a clutching mechanism which prevents simultaneous operation.



#### SMB-00/000 Power Trains

#### **Electric Power Train**





## Limitorque Actuator Gear Train





## SMB-000 Motor





**College of Engineering** 

#### SMB Helical Gear Teeth Totals

| SMB-000 | 45 |
|---------|----|
| SMB-00  | 65 |
| SMB-0   | 72 |
| SMB-1   | 72 |
| SMB-2   | 70 |
| SMB-3   | 60 |
| SMB-4   | 72 |



## SMB-000 Exploded View





#### SMB-000 Electric Power Train





# SMB-000 Electric Power Train – Side View





# SMB-000/00 Worm Shaft Gear Assembly





#### SMB-000/00 Worm and Worm Gear





**College of Engineering** 

#### SMB-000 Drive Sleeve





#### SMB-000/00 Declutch Mechanism





#### SMB-000 Actuator Drive Sleeve





#### SMB-00 Actuator Drive Sleeve





## SMB-000/00 Drive Sleeve Exploded





## SMB-00 Top-Mounted Manual Power Train





## SMB-00 Side-Mounted Manual Power Train





# SMB-000/00 Handwheel Worm Gear Assembly





# SMB-000/00 Worm/Belleville Spring Pack Assembly







## SMB-000/00 Scissor Action Torque Switch





TOP VIEW

## Modified Leaf and Knee Type Torque Switch





#### SMB-000/00 Limit Switch





### SMB-000 Housing





#### SMB/SB-0 thru -4



#### SMB-0 thru 4 Power Trains





## SMB/SB-0 thru –4 Electric Power Train





## SMB/SB-0 thru –4 Motor Pinion Arrangement

**SMB-0 Motor Pinion Arrangement** 





### SMB/SB-0 thru –4 Worm Shaft Clutch Gear





Worm Shaft Clutch Gear

**College of Engineering** 

## SMB/SB-0 thru –4 Worm Shaft Exploded View





## SMB/SB-0 thru –4 Worm and Worm Gear





## SMB/SB-0 thru –4 Spring Pack Assembly





#### SMB/SB-0 thru -4 Drive Sleeve





**College of Engineering** 

## SMB/SB-0 thru –4 Manual Power Train





## SMB/SB-0 thru -4 Handwheel Assembly





NOTE: SMB-3 and SMB-4 have needle bearings located in the cartridge cap for the handwheel

## SMB/SB-0 thru –4 Worm Shaft Clutch





### SMB/SB-0 thru –4 Worm Shaft and Declutch Mechanism





## SMB/SB-0 thru –4 Declutch Mechanism





## SMB/SB-0 thru -4 Housing





### Limitorque SB Actuators



# SB Belleville Spring Compensator Housing Cover Assembly





## SB Spring Compensator





## SB Belleville Spring Assembly With Bearing Cartridge





## SB Belleville Spring Assembly With Spring Cartridge





### SB Spring Compensators

SB-0 4 Springs

SB-1 14 Springs

SB-2 5 Springs

SB-3 10 Springs

SB-4 4 Springs



#### **HBC Actuator**



### HBC –0 Thru 3 Exploded View





## HBC –0 Thru 3 Operator Top and Side Views





#### HBC -4 Thru 10 Actuator





**College of Engineering** 

# Limitorque Lubrication



### Limitorque Lubrication

- Lubrication of the actuator internals is critical to the proper and sustained operation of the equipment.
  - Reduces wear
  - Removes heat
  - Resists moisture
- Major wear areas include
  - Bearings drive sleeve, spring pack, and worm shaft
  - Sliding surfaces drive sleeve splines, worm shaft splines, worm and worm gear teeth
  - Motor pinion and drive gear



#### Limitorque Recommendations

- For SMB and SB actuators
  - Not corrosive to steel gears, ball or roller bearings
  - Must contain an EP additive
  - No grit, abrasive or filler material
  - Suitable for the environmental temperature range
  - No separation at temperatures up to 300°F
  - Must not cause Buna-N or Viton to swell more than 8%
  - Good resistance to moisture
  - Good resistance to oxidation



#### Recommended Lubricants

- Exxon Nebula EP-0 for all units through SMB-4
- Prior to SMB/SB/SBD serial number 295809, Sun Oil Co. 50 – EP
- For Nuclear service inside containment, Exxon Nebula EP-1 is the only qualified lubricant.
- For limit switches, Beacon 325 or Mobil Mobilgrease 28 is used
- Lubricants should never by mixed.



#### **New Lubricants**

- Exxon Mobil has discontinued the manufacture of Nebula EP greases.
- Nuclear industry has identified the MOV Long Life grease for future use.
- ANSI bench tests have satisfied the Limitorque recommendations for actuator lubrication.



#### Rotork Actuators



## Rotork "A" Range Actuators





## Rotork "A" Range Actuator





# Rotork Actuator Size and Output Torque Values

Rotork "NA" type actuators are "A" Range actuators qualified for duty in nuclear power plants.

| Torque, lb/ft at rpm |                  |          |          |          |          |          |           |            |            |
|----------------------|------------------|----------|----------|----------|----------|----------|-----------|------------|------------|
| Actuator             | 50 Hz:<br>60 Hz: | 18<br>21 | 24<br>29 | 36<br>43 | 48<br>57 | 72<br>86 | 96<br>115 | 144<br>173 | 192<br>230 |
| 7NA                  |                  | 25       | 25       | 23       | 20       | 20       | 16        |            |            |
| 11NA                 |                  | 50       | 50       | 45       | 40       | 40       | 32        |            |            |
| 14NA                 |                  | 120      | 120      | 100      | 80       | 80       | 60        | 45         |            |
| 16NA                 |                  | 225      | 225      | 190      | 150      | 150      | 110       | 80         |            |
| 30NA                 |                  | 400      | 400      | 375      | 300      | 300      | 240       | 190        |            |
| 40NA                 |                  | 750      | 750      | 625      | 500      | 500      | 400       | 300        |            |
| 70NA                 |                  | 1100     | 1100     | 950      | 750      | 750      | 550       | 475        | 400        |
| 90NA                 |                  | 1500     | 1500     | 1250     | 1000     | 1000     | 750       | 640        | 540        |



#### Rotork Actuator Assembly





# Rotork Category 1 Actuator





#### Rotork Stator Assembly





# Rotork Torque Switch Mechanism





#### Rotork Add-on Pak



